INNOVATING BEYOND ZERO AN INTRODUCTION TO: RADIOACTIVITY RADIATION EFFECTS OF RADIATION ON THE HUMAN BODY LEGAL LIMITS FOR RADIATION EXPOSURE

Periodic Table of the Elements

1 IA																	18 VIIIA
H					Atomic Number	-		. Symbol									He
Hydrogen 1.008	2 IIA				Nome	Hydr	ogen	oprove				13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	Helium 4.0035 2
Li	Be	Electrons per shell \rightarrow 1 \rightarrow 1									Ě	Ňe					
Lithium 6.96 21	Beryllium	State of matter (color of name) Subcategory in the metal-metalloid-nonmetal trend (color of background) Alter and the descent of the descent								Fluorine 18,998 3-7	Nean 28.990 3-8						
Na	Ma			A A	kaline earth met ansition metals	als Actinides	: nsition metals	Reactive norm	etals			Å	Si	P	š	č	År
22.50914528 2-5-1	Magnesium	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	Aluminium 26 Mil 24-3	Silicon 28.885 244	Phosphorus 30,9% 24-5	Sultur 32.06 2-8-6	Chiarine 35.45 3-8-7	Argan 39.948 3-8-8
ĸ	ca	Sc	22 Ti	23 V	Cr	Mn	Fe	Co	Ni	Cu	Ž'n	Ga	Ge	As	Se	Br	Kr
Processor 29,0983 2-8-5-1	Calcium 40070 1002	Scandium 44.955938 2-81-3	Titanium 47.647 2-8-8-2	Vanadium 50.945 2-8-3-2	Chromium 51.9%1 2-6-13-1	Manganese 54.930044 24-2-2	Iron 55.845 2-8-16-2	Cobelt 58,933 2-8-8-2	Nickel 58.693 2-8-2	Copper 43.546 2-8-8-1	Dinc 45.38 2-5-8-2	Gallium 49.723 2-8-8-3	Germanium 72.630 2-8-4	Arsenic 74.922 3-8-8-5	Selenium 38.971 34-8-4	liromine 79.504 2-8-7	Krypton 83.798 3-8-8-8
Rb	Sr	39 Y	Žr	Nb	Mo	Tc	Ru	Rh	Pd	Åa	Cd	19 In	Sn	Sb	Te	53	Xe
Rubudum 85.4678 348.847	Strantium 1742 241347	Yttrium 68.92564 2-8-8-2	Zirconium 91.23A 2-8-18-12	Niobium 92,90637 2-8-8-12-1	Nolybdenum 95.95 2-8-8-8-1	Technetium (98) 2-8-8-0-2	Ruthenium 101.07 3-8-8-1	Rhodium 102.91 2-8-8-3	Palladium 106.42 2-8-18	Silver 107.87 7-8-8-1	Cadmium TQ.41 34-8-8-2	Indium 114.02 1-8-8-9-3	Tin 18.11 14-8-84	Antimony 13.76 28-8-8-5	Tellurium 127.40 2-8-18-18-5	lodine 126.99 2-5-18-19-7	Xenon 131.29 2-8-18-18-8
Cs.	Ba	\$3-71	⁷² Hf	Та	W	Re	0s	"	Pt	Âu	Ha	TI	Pb	Bi	Po	At	Rn
Campion 102,48545794 28-8-88-1	Berium 199,307 19,919,61	Lanthanides	Hafnium 178.45 2-8-33-9-1	Tantalum 180,54788 3-8-8-32-5-3	Turigation 183,84 2-8-18-02-0-2	Rhenium 196.21 2-8-8-02-0-2	Osmium 78.23 2-8-8-02-16-2	Iridium 192.22 3.6 8-32-5-2	Platinum 795.08 24/8/2017	Gold 1N.97 2-8-8-32-8-1	Morcery 200.59 24-9-25-9-2	Thallium 294.38 74/9/31/8/3	Lead 207.2 7.8-8-27-8-4	Bismuth 256.95 2-8-32-8-5	Polonium (2011) 28-8-32-8-6	Astatine (250) 2-8-19-20-19-7	Radon (123) 2-8-8-20-8-8
Fr	Ra	89-103	Rf	Dh	Sa	Bh	108 Hs	109 Mt	Ds	Ra	Cn	Nh	FI	Mc		Ts	οď
Francism D200 D-00-02-08-01	Radium (200)	Actinides	Rutherfordium (267) 2-8-19-32-19-2	Dubnium (266) 3-8-16-25-32-16-3	Seaborgium (264) 2-8-8-22-32-32-2	Bahrium 02708 348-20-00-2	Hassion (271) 248-22-20-22	Meitherium (278) 2 4 44-20-20-16-2	Darmstadtium (281) 24/9-02/02/07-0	Reentgenium (282) 24-9-32-0-2	Capareloism (285) 24/9/32/32-9-2	Nitronium (286) 24-16-32-32-36-3	Flarovium (289) 74/9/32/32/84	Moscovium (296) 2+10-20-20-40-5	Livermorium (293) 24-9-32-32-94	Tennessine (214) 58-8-02-02-18-T	Oganesson (214) 24-10-25-00-86-8
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
		14 8 8+1 89	9D	140.91 24:8:11.87 91	144.74 14.9.114.2 92	1451 2416 (54.2 93	76.56 26.76 (1.6.2 94	15175 24/8/541 95	157.26 2.4 18.25+1 96	158.93 3.6 W 17-8-1 97	162.50 2.5.8.28.6.7 98	164.93 2.6 10.79.6 (99	167.25	168,97 2-6-9-71-8-7 101	102	103	
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		(217)	232.04	231.84	238.83	(17T)	(244)	(343)	(247)	(247)	(251)	(252)	(257)	(256)	(259)	(364)	

WHICH ELEMENTS ARE RADIOACTIVE?

- Virtually all elements have unstable (radioactive) isotopes.
- 38 elements have no stable isotopes (Atomic Number 43, 61, & >83).

RADIOACTIVE ISOTOPES DECAY (CHANGE THEIR ATOMIC NUMBER AND MIGHT CHANGE MASS) BY ONE OF FOUR PROCESSES.

- Alpha Decay
- Beta Decay
- Positron Emission
- Electron Capture

 Radioactive decay may or may not be accompanied by a Gamma ray.

ALPHA DECAY

- Helium atom ejected.
- Atomic Number decreases by 2.
- Mass decreases by 4.

BETA DECAY

- An electron is ejected from a neutron.
- The neutron becomes a proton.
- Atomic number increases by 1.
- Mass remains the same.

POSITRON EMISSION

- A positron is ejected from a proton.
- The proton becomes a neutron.
- Atomic number decreases by 1.
- Mass remains the same.

ELECTRON CAPTURE

An orbital electron is captured by a proton.
The proton becomes a neutron.
Atomic number decreases by 1.
Mass remains the same.

1 H Hydrogen Stable					F	RADI	0A(CTIV	E EL	EMI	ENT	S					2 He Helium Stable
	4 Be Beryllium Stable											5 B Boron Stable			8 O Oxygen Stable	9 F Fluorine Stable	10 Ne Neon Stable
11 Na Sodium Stable	12 Mg Magnesium Stable											13 Al Aluminum Stable	14 Si Silicon Stable	15 P Phosphorus Stable	16 S Sulfur Stable		18 Arr Argon Stable
		21 Sc Scandium Stable	22 Ti Titanium Stable	23 V Vanadium Stable	2.4 Cr Chromium Stable	25 Mn Manganese Stable	26 Fe Iron Stable	27 Co Cobalt Stable	2.8 Ni Nickel Stable	29 Cu Copper Stable	30 Zn Zinc Stable	31 Gallium Stable	32 Ge Germanium Stable	33 As Arsenic Stable	34 Se Selenium Stable	35 Br Bromine Stable	36 Kr Krypton Stable
37 Rb Rubidium Stable	38 Str Strontium Stable		40 Zr Zirconium Stable	41 Nb Niobium Stable	42 Mo Molybdenum Stable	43 Tc Technetium 4.21 x 10 ⁶ y	44 Ru Ruthenium Stable	45 Rh Rhodium Stable	46 Pd Palladium Stable	47 Ag Silver Stable	48 Cd Cadmium Stable		50 Sn _{Tin} Stable	51 Sb Antimony Stable			54 Xe Xenon Stable
55 Cs Cesium Stable	56 Ba ^{Barium} stable		72 Hf Hafnlum Stable	73 Ta Tantalum Stable		75 Re Rhenlum Stable	76 Os Osmium Stable		78 Pt Platinum Stable	79 Au Gold Stable	80 Hg Mescury Stable	81 Thatlium Stable	82 Pb Lead Stable	83 Bi Bismuth Stable	84 Po Polonium 102 y	85 At Astatine 8.1 hr	86 Rn Radon 3.82 d
87 Fr Francium 22 min	88 Ra Radium 1600 y		104 Rf Rutherfordium 13 hr	105 Db Dubnium 32 hr	106 Sg Seaborgium 2.4 min	107 Bh Bohrium 17 s	108 Hs Hassium 9.7 s	109 Mt Meitnerium 0.72 s	110 DS Darmstadtium 11.1 s	111 Rg Roentgenium 26 s	112 Cn Copernicium 29 s	113 Nh Nihonium 0.48 s	114 Fl Flerovium 2.65 s	115 Mc Moscovium 87 ms	116 LV Livermorium 61 ms	117 Ts Tennessine unknown	118 Og Oganesson 1.8 ms
						o e Id P	m S	52 m	63 6 Eu G	4 id 1	65 b	66)y F	57 10			o b	71 .U

17.4 y Pa Protactinium 3.28 x 10⁴ y U Uranium 2.34 x 10⁷ y Np Neptunium 2.14 x 10⁶ y **Pu** Plutonium 8.00 x 10⁷ y Am Americium 7370 y **Cm** Curium 1.56 x 10⁷ y Bk Berkelium 1380 y Cf Californium 898 y Es Einsteinium 471.7 d Fm Fermium 100.5 d No Nobelium 58 min Lr Lawrencium 4 hr Actinium 21.77 y **Th** Thorium 7.54 x 10⁴ y Md Mendelevium 51.5 d

HOW LONG DO RADIOACTIVE ISOTOPES LAST?

- Some last billions of years.
- Some only last a fraction of a second.
- The half-life of an isotope is the time it takes for half the mass of a sample to decay to other isotopes.

EXAMPLE HALF-LIVES

- Nitrogen-16: 7.13 seconds.
- Cesium-133: 2 years.
- Cobalt-60: 5.3 years.
- Plutonium-239: 24,100 thousand years.
- Technium-99: 211,000 years.
- Uranium-235: 700 million years.
- Uranium-238: 4.5 billion years

TYPES OF RADIATION FROM NUCLEAR POWER PLANTS

- Neutron average of 2.4 high energy neutrons per fission of U-235, with 2 "fission fragments" one about 3/5 mass of U-235 the other about 2/5 (ie CS-133 and Tc-99).
- 2. Gamma from fission and decay of fission products & activated structural materials.
- 3. Beta from decay of fission products & activated structural materials.
- 4. Alpha from decay of fission products.

PARTICLE RADIATION EFFECTS ON THE BODY

- High energy ionized particles (Alpha or Beta)passing through a cell strip electrons from atoms in the cell creating free radicals.
- Free radicals are very reactive chemically.
- Subsequent chemical reactions damage cells in various ways.

GAMMA RADIATION EFFECTS ON THE BODY

- Gamma rays are not physical particles.
- Gamma rays interact with atoms along their path releasing high energy electrons.
- These electrons behave like Alpha and Beta particles.

NEUTRONRADIATION EFFECTS ON THE BODY

- Neutrons collide with the nucleus of atoms causing them to recoil and loose their electrons (they become ionized).
- These ionized particles behave like Alpha and Beta particles.

RADIATION MEASUREMENT UNITS

- RAD Radiation Absorbed Dose, a measurement of how much energy absorbed by a gram of material.
- There is a difference between how much biological damage is done by 1 RAD depending on the type of radiation. This is accounted for by a "Quality Factor" (QF).

ROENTGEN EQUIVALENT IN MAN

- REM –Roentgen Equivalent in Man. 1REM = 1RAD x QF.
- Quality Factors:
 - Gamma and Beta = 1.
 - Alpha = 20.
 - Neutron = 10.

LEGAL LIMITS FOR RADIATION OCCUPATIONAL RADIATION WORKER EXPOSURE

- Whole body: 5 REM per year
- Any organ:
- Skin: 50 REM per year
- Extremity:
- Lens of eye:

50 REM per year 50 REM per year 15 REM per year

50 REM per year

LEGAL LIMITS FOR OCCUPATIONAL RADIATION EXPOSURE TO THE PUBLIC

• Whole body: 0.1 REM per year

Background Annual Average Radiation Doses to the U.S. Population

Radiatio	n Source	Average Annual Whole Body Dose (mrem/year)					
Natural:	Cosmic	26					
	Terrestrial	29					
	Radon	200					
	Internal (K-40, C-14, etc.)	40					
Manmade:	Diagnostic X-Ray	39					
	Nuclear Medicine	14					
	Consumer Products	11					
	All Others (fallout, nuclear power plants, air travel, occupational, etc.)	2					
	Average Annual Total	361 mrem/year					

Tobacco (If You Smoke, Add ~ 280 mrem)

The tobacco in cigarettes contains lead-210. Lead-210 is a naturally occurring radionuclide that precipitates out of the atmosphere and deposits on the leaves of tobacco. When the tobacco is inhaled, the smoker receives a dose from the inhaled lead-210 as well as polonium-210, the decay product of lead-210. Lead-210 is deposited on the surfaces of bones and polonium-210 is deposited in the liver, kidney and spleen.

	Table 11.9.2: The Effects of a Single Radiation Dose on a 70 kg Human
Dose (rem)	Symptoms/Effects
< 5	no observable effect
5–20	possible chromosomal damage
20–100	temporary reduction in white blood cell count
50–100	temporary sterility in men (up to a year)
100–200	mild radiation sickness, vomiting, diarrhea, fatigue; immune system suppressed; bone growth in children retarded
> 300	permanent sterility in women
> 500	fatal to 50% within 30 days; destruction of bone marrow and intestine
> 3000	fatal within hours

Radiation doses of 600 rem and higher are invariably fatal, while a dose of 500 rem kills half the exposed subjects within 30 days. Smaller doses (\leq 50 rem) appear to cause only limited health effects, even though they correspond to tens of years of natural radiation. This does not, however, mean that such doses have no ill effects; they may cause long-term health problems, such as cancer or genetic changes that affect offspring. The possible detrimental effects of the much smaller doses attributable to artificial sources (< 100 mrem/yr) are more difficult to assess.